MultipointConventions


KeldyshQFT

Conventions for real-frequency quantum field theory in the Keldysh formalism, as used in 1 2 3 4.

Basic building blocks

Variable Definition Diagram Comment
Partition function \[ \mathcal{Z} = \int \mathcal{D}[\overline{c},c]\, e^{iS[\overline{c},c]} \] \(-\) \(-\)
Action \[ \begin{aligned} S[\overline{c},c] &= S_0[\overline{c},c] + S_{\mathrm{int}} [\overline{c},c] \\ &= \overline{c}_{1'} [G_0^{-1}]_{1'|1} c_{1} + \tfrac{1}{4} \overline{c}_{1'} \overline{c}_{2'} [\Gamma_0]_{1'2'|12} c_{2} c_{1} \end{aligned} \] \(-\) Multi-indices: time, Keldysh contour index, spin, etc. Einstein summation convention is used.
Contracting time and Keldysh indices means an integration along the Keldysh contour.
Bare interaction \[ \begin{aligned} &[\Gamma_0]^{j_{1'}j_{2'}|j_1 j_2}_{\sigma_{1'}\sigma_{2'}|\sigma_1 \sigma_2}(t_{1'},t_{2'}|t_1,t_2 ; q_{1'},q_{2'}|q_1 q_2) \\ &= -j_1 \delta_{j_{1'}=j_{2'}=j_{1}=j_{2}} \delta(t_{1'}=t_{2'}=t_{1}=t_{2}) \\ &\quad \times (\delta_{\sigma_{1'},\sigma_2}\delta_{\sigma_{2'},\sigma_1} - \delta_{\sigma_{1'},\sigma_1}\delta_{\sigma_{2'},\sigma_2}) [\Gamma_0](q_{1'},q_{2'}|q_1 q_2) \end{aligned} \] Bare_vertex $j$: Keldysh contour index
$\sigma$: Spin index
$t$: real time variable
$q$: everything else
Bare inv. propagator $$[G_0^{-1}]_{1'|1} = \delta_{1'|1} i\partial_{t_1} - h_{1'|1}$$ \(-\) $h_{1'\mid 1}$ is the single-particle Hamiltonian, $H_{0}[\overline{c},c] =\overline{c}_{1'} h_{1'\mid 1} c_1$
Bare propagator \[ \begin{aligned} {[G_0]}_{1|1'} &= -i \langle \mathcal{T_\mathcal{C}}\, c_1 \overline{c}_{1'}\rangle_0 \\ &= \frac{-i}{\mathcal{Z}_0} \int \mathcal{D}[\overline{c},c]\, c_1 \overline{c}_{1'} e^{iS_0[\overline{c},c]} \end{aligned} \] Bare_propagator with the non-interacting partition function $\mathcal{Z}_0 = \int \mathcal{D}[\overline{c},c]\, e^{iS_0[\overline{c},c]}$
Full propagator \[ \begin{aligned} G_{1|1'} &= -i\langle \mathcal{T_\mathcal{C}}\, c_1 \overline{c}_{1'}\rangle \\ &= \frac{-i}{\mathcal{Z}} \int \mathcal{D}[\overline{c},c]\, c_1 \overline{c}_{1'} e^{iS[\overline{c},c]} \end{aligned} \] Full_propagator \(-\)
Dyson equation \[ \begin{aligned} G_{1|1'} &= [G_0]_{1|1'} + [G_0]_{1|2'} \Sigma_{2'|2} G_{2|1'} \\ \Leftrightarrow \quad G^{-1}_{1'|1} &= [G_0^{-1}]_{1'|1} - \Sigma_{1'|1} \end{aligned} \] Dyson_equation \(-\)
Four-point (4p) function $G^{(4)}_{12|1'2'} = i\langle \mathcal{T_\mathcal{C}}\, c_1 c_2 \overline{c}_{2'} \overline{c}_{1'} \rangle$ 4p_fct \(-\)
Tree expansion $i G^{(4)}_{12|1'2'} = G_{1|1'} G_{2|2'} - G_{1|2'} G_{2|1'} + i G^{(4)}_{c;\,12|1'2'}$ Tree_expansion \(-\)
Connected 4p function $G^{(4)}_{c;\,12|1'2'} = - G_{1|3'} G_{2|4'} \Gamma_{3'4'|34} G_{3|1'} G_{4|2'}$ 4p_connected \(-\)

Still to do

Two-particle channels

Spin components

Keldysh contour, Keldysh rotation, FDT

Symmetries

References

  1. Elias Walter, Ph.D. Thesis, LMU Munich, 2022 

  2. Ge et al., Real-frequency quantum field theory applied to the single-impurity Anderson model, PRB, 2024 

  3. Ritz et al., KeldyshQFT: A C++ codebase for real-frequency multiloop functional renormalization group and parquet computations of the single-impurity Anderson mode, JCP, 2024 

  4. Ritz et al., Testing the parquet equations and the U(1) Ward identity for real-frequency correlation functions from the multipoint numerical renormalization group, arXiv, 2025